신장암 수술 후 ‘급성 신손상’ 예측법 개발
신장암 수술 후 ‘급성 신손상’ 예측법 개발
분당서울대병원 신장내과 김세중 교수 연구팀 성과

인공지능 이용 여러 기관에 적용 가능한 급성 신손상 예측 시스템 구축
  • 박원진
  • admin@hkn24.com
  • 승인 2021.09.28 08:17
  • 댓글 0
이 기사를 공유합니다

분당서울대병원 신장내과 김세중 교수
분당서울대병원 신장내과 김세중 교수

[헬스코리아뉴스 / 박원진] 급성 신손상은 신장세포가 갑작스럽게 손상을 받아 신장기능이 약화되는 질환이다. 병원에 입원하는 환자의 5~10%에서 발생하며, 신장암 수술을 받는 경우에는 위험도가 더 커진다. 이를 조기에 치료하지 못하면 비가역적으로 진행해 투석, 사망 같은 위험한 상황을 초래할 수 있기 때문에, 특히 신장암 환자를 대상으로 수술 후 급성 신손상이 발생하지 않는지 주의 깊은 모니터링이 필요하다.

분당서울대병원 신장내과 김세중 교수, 비뇨의학과 이상철 교수, 서울대병원 신장내과 한승석 교수, 비뇨의학과 곽철 교수 연구팀은 머신러닝 알고리듬을 이용해 ‘신장암 수술 후 급성 신손상 예측 시스템’을 개발하고, 기존 모델과 비교해 정확도를 평가해 그 결과를 발표했다.

우선 연구진은 2003년부터 2017년까지 서울대병원과 분당서울대병원에서 신세포암으로 편측 신절제술을 받은 환자 총 4104명의 자료를 이용해 머신러닝 기법을 이용한 급성 신손상 예측 모델을 만들고 검증했다. 수술 유형 및 시간, 성별, 기저질환, 종양 크기를 포함한 데이터를 수집했으며, 이를 바탕으로 서포트 벡터 머신, 랜덤 포레스트, 익스트림 그래디언트 부스팅, 라이트 GBM라는 4가지 머신러닝 기법을 사용해 예측 모델을 구축했다.

그 결과 수술 후 급손상은 4104명 중에서 총 1167명의 환자에게 나타나, 28.4%의 발생률을 기록했다. 알고리듬 성능을 평가하는 지표인 AUROC 기준으로, 머신러닝 모델들은 기존에 사용하던 SPARK 인덱스(단순 급성신손상 위험지표)에 비해 더 높은 수행력을 보였으며, 그중에서도 특히 라이트 GBM 모델의 AUROC가 0.81로 가장 예측도가 높았다.

 

김세중 교수는 “이번 연구는 단일 기관이 아닌 다기관 임상자료를 활용하여, 머신러닝 기법을 통해 여러 기관에서 적용 가능한 알고리듬을 개발했다”며, “향후 임상에 적용했을 때 신장암 수술 후 급성신손상 예측도를 향상시킬 수 있을 것으로 기대된다”고 밝혔다.

한편 이번 연구는 세계적 학술지인 사이언티픽 리포트(Scientific Reports)에 게재됐다. 


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

      • 회사명 : (주)헬코미디어
      • 서울특별시 마포구 매봉산로2길 45, 302호(상암동, 해나리빌딩)
      • 대표전화 : 02-364-2002
      • 청소년보호책임자 : 이슬기
      • 제호 : 헬스코리아뉴스
      • 발행일 : 2007-01-01
      • 등록번호 : 서울 아 00717
      • 재등록일 : 2008-11-27
      • 발행인 : 임도이
      • 편집인 : 이순호
      • 헬스코리아뉴스에서 발행하는 모든 저작물(컨텐츠, 기사)는 저작권법의 보호를 받는 바, 무단·전재·복제·배포 등을 금합니다.
      • 「열린보도원칙」 당 매체는 독자와 취재원 등 뉴스이용자의 권리 보장을 위해 반론이나 정정보도, 추후보도를 요청할 수 있는 창구를 열어두고
        있음을 알려드립니다. 고충처리인 이슬기 02-364-2002 webmaster@hkn24.com
      • Copyright © 2024 헬스코리아뉴스. All rights reserved. mail to admin@hkn24.com
      ND소프트
      편집자 추천 뉴스
      베스트 클릭